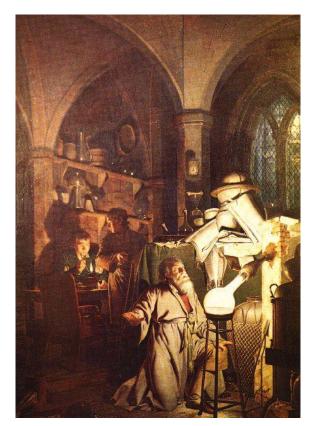
Phosphorus

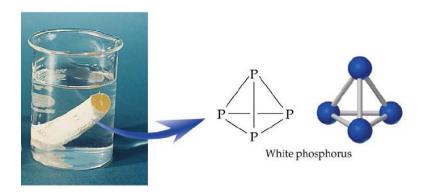
- Phosphorus exists in several allotropic forms: white (or yellow), red, violet and black.
- Never found free in nature, it is widely distributed in combination with minerals.
 Phosphate rock, which contains the mineral apatite, an impure calcium phosphate, is an important source of the element.

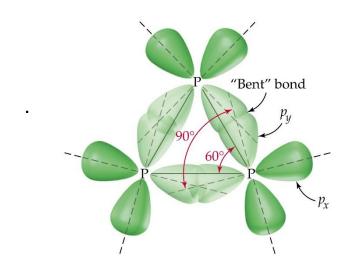


Apatite [Ca₅(PO₄)₃(OH, F, CI)]

Discovery of Phosphorus

Phosphorus was first isolated in 1669 by Hennig Brand, a German physician and alchemist. Like most chemists of his day, was trying to make gold. He let urine stand for days, boiled it down to a paste, heated this paste to a high temperature, and drew the vapors into water where they could condense to gold. To his surprise and disappointment, however, he obtained instead a white, waxy substance that glowed in the dark. Brand had discovered phosphorus. The word phosphorus comes from the Greek and means "light bearer". Thankfully, phosphorus is now primarily obtained from phosphate rock.

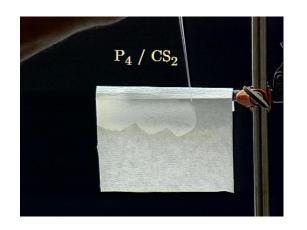



The discovery of phosphorus by Hennig Brand in 1669 - painted by Joseph Wright.

White Phosphorus

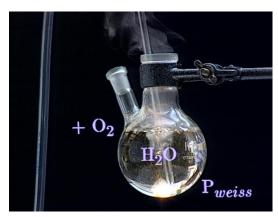
- White phosphorus is composed of P₄ molecules.
- Very poisonous: 50 mg constituting an approximate fatal dose.
- As three phosphorus atoms are involved per tetrahedral surface an anomalously small bond angle of 60 degrees is found in the molecule which is highly strained as a result.
- White phosphorus is especially reactive. It spontaneously ignites in air and must be stored under water. Its affinity for oxygen is so high that it will, nevertheless, burn under water if oxygen is introduced via a tube.

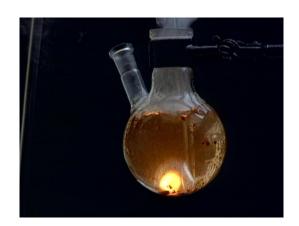
Oxidation of White Phosphorus in Air



White phosphorus is self-igniting in air. Ignition temperature is dependent upon the surface structure. Phosphorus in compact form self ignites above 50°C. In this experiment, white phosphorus is on a filter paper. It starts to smoke through superficial oxidation. The phosphorus is further heated to its melting point (Fp: 44°C) by the energy released in this superficial oxidation. The melted mass continues to be heated up by the progressing oxidation and after a short period the phosphorus combusts in its entirety.

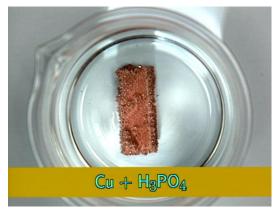
Oxidation of White Phosphorus in Air

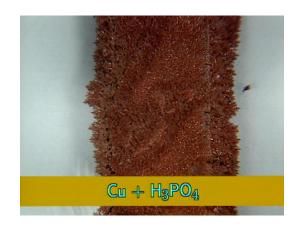




In contrast to the compact white phosphorus, the finely dispersed form burns at room temperature. This finely dispersed white phosphorus with a large surface area can be produced by evaporation of a solution of white phosphorus in carbon disulphide (Bp.: 46°C).

Oxidation of White Phosphorus under Water

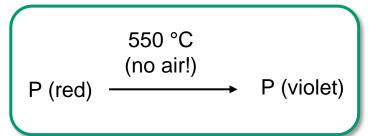


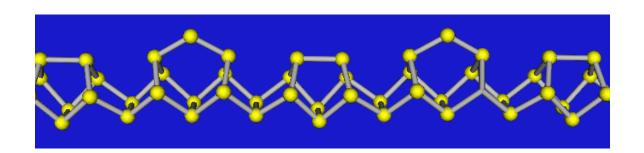


- 1) A piece of white phosphorus is added to water.
- 2) Pure oxygen is introduced through a tube.
- 3) Even under water flames appear from the oxidation.

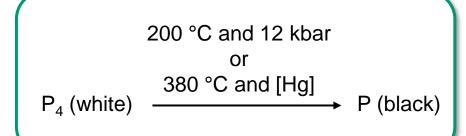
Precipitation of Copper on White Phosphorus

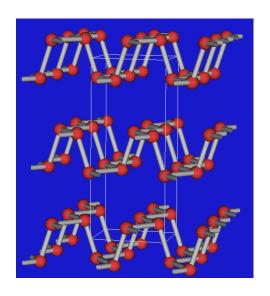
White phosphorus exhibits a high tendency to oxidation, and is therefore a strong reductant. White phosphorus can be added to salt solutions of easily reduced (more electropositive) metals (gold, silver, copper, lead), leading to the precipitation of the elements. The experiment demonstrates the reduction of CuSO₄.

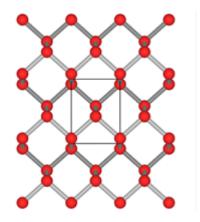

Red Phosphorus


- Amorphous, red phosphorus is formed by heating white phosphorus to 250°C or by exposing white phosphorus to sunlight.
- Red phosphorus is not poisonous and is not as dangerous as white phosphorus.
- Used in safety matches, fireworks, smoke bombs and pesticides.

Violet Phosphorus

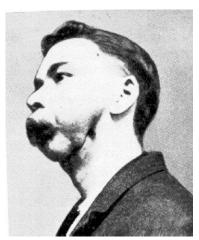

- Violet phosphorus is formed by heating red phosphorus to 550 °C.
- Complicated sheet structure.



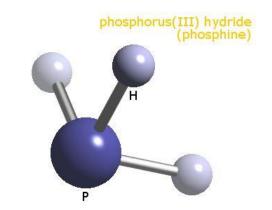


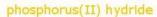
Black Phosphorus

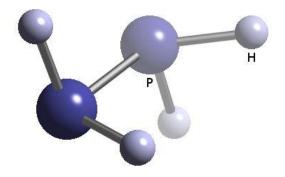
- Black phosphorus is also formed by heating white phosphorus, but a mercury catalyst and a seed crystal of black phosphorus are required.
- Black phosphorus has a sheet structure.
- Black phosphorus is the least reactive form of phosphorus and has no significant commercial uses.



Phosphorus and Matches

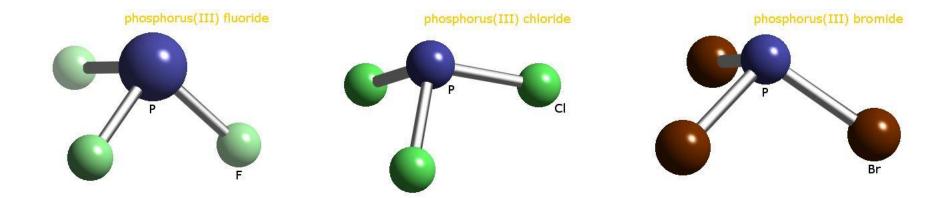

- In 1780 the 'Ethereal Match' -- waxed paper tipped with phosphorus, in a sealed glass container -- was produced in France. When the glass was broken the phosphorus ignited and set fire to the paper or string.
- John Walker invented the friction match in 1827. For many years, most friction matches were tipped with a mixture of P₄ and sulfur, and could be struck anywhere.
- After red phosphorus was discovered in 1845, J. E. Lundstrum invented the safety match (P_{red} on the striking surface and Sb₂S₃/KClO₄ on the match).
- Workers using P₄ in the manufacture of matches suffered a condition known as 'phossy jaw'. P₄ was eventually outlawed in matches (1912!).





Phosphorus Hydrides

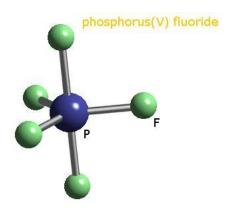
- Phosphine, PH₃, is a very reactive poisonous gas. It
 inflames spontaneously in air and has been
 described as smelling of both garlic and rotten fish.
- PH₃ is less basic than NH₃, as the P-H bond is much less polar. → PH₃ does not form hydrogen bonds and [PH₄]Cl dissociates to PH₃ and HCl.
- P₂H₄ is a colorless liquid that also inflames spontaneously in air.

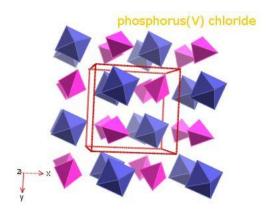


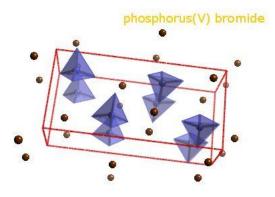
Phosphorus(III) Halides

Direct reaction of phosphorus with halogens gives the trihalides if phosphorus is kept in excess.

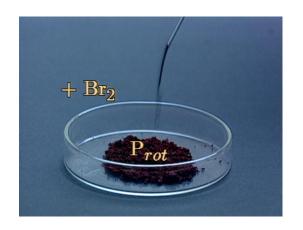
$$P_4 + 6 X_2 \longrightarrow 4 PX_3$$



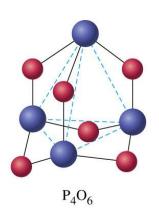

Phosphorus(V) Halides

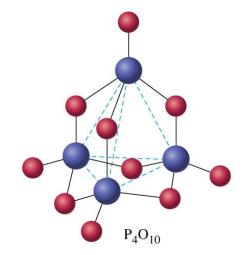

• All PX₅ can be made from the elements.

$$P_4 + 10 F_2 \longrightarrow 4 PF_5$$


PCl₅ and PBr₅ are ionic compounds in the solid state: [PCl₄]⁺[PCl₆]⁻ and [PBr₄]⁺Br⁻.

Reaction of Red Phosphorus with Bromine




PBr₅ is a crystalline substance with the structure [PBr₄]⁺Br⁻, and degrades into PBr₃ and Br₂ above 84 °C. Upon cooling, the reaction progresses in the opposite direction. During combustion, it is therefore predominantly PBr₃ that is produced, which then reacts further with the bromine vapor during the cooling process.

$$P(red) + 2.5 Br_2(I) \longrightarrow PBr_3(g) + Br_2(g) \stackrel{< 84 °C}{\longrightarrow} PBr_5$$

> 84 °C

Phosphoroxides

- In P₄O₆, an O atom is inserted between each pair of P atoms of the basic P₄ structure, leading to a total of six O atoms in the molecule.
- In P₄O₁₀, an additional O atom is bonded to each P atom, yielding a total of ten O atoms per molecule.
- P₄O₁₀ is an efficient drying agent. It hydrolyzes to phosphoric acid.

$$P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$$

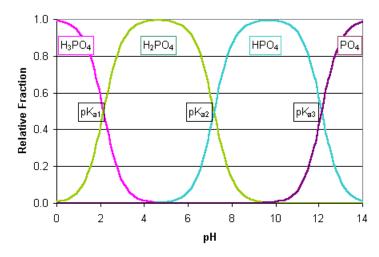
Oxoacids of Phosphorus

FORMULA	COMMON NAME	ANION
FURMULA	COMMON NAME	ANIO

H₃PO₄ Phosphoric acid Phosphate

H₃PO₃ Phosphonic acid Phosphite

H₃PO₂ Phosphinic acid Phosphinate


H₄P₂O₇ Diphosphoric acid Diphosphate

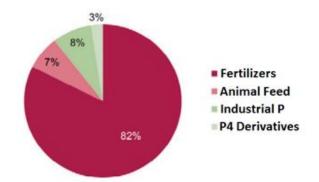
(HPO₃)_n Metaphosphoric acid Metaphosphate

HO

Phosphoric Acid (H₃PO₄)

- ~ 80% of H₃PO₄ is used in the production of agricultural fertilizers.
- The commercial method of preparation is the addition of sulfuric acid to phosphate rock.
- Pure phosphoric acid is a white solid that melts at 42 °C to form a viscous liquid.
- In foods and beverages (Coca Cola), phosphoric acid provides an acidic flavor.

Phosphoric acid behaves as a triprotic acid


$$Ca_3(PO_4)_2 + 3 H_2SO_4 \longrightarrow 3 CaSO_4 + 2 H_3PO_4$$

Polyphosphoric Acids

Heating phosphoric acid results in a condensation of the molecules with elimination of water to form dimers, trimers, and higher polymers of phosphoric acid.

Phosphate-Fertilizers

- Phosphate-fertilizers contain calcium or ammonium phosphates.
- Natural Ca₃(PO₄)₂ is not soluble → reaction with sulfuric or phosphoric acid to make dihydrogenophosphates (60 % of the world production of H₂SO₄ is used that way).
- Ammonium phosphate is formed by reaction of NH₃ with phosphoric acid.

$$Ca_{3}(PO_{4})_{2} + 2 H_{2}SO_{4} \longrightarrow Ca(H_{2}PO_{4})_{2} + 2 CaSO_{4}$$

$$Ca_{3}(PO_{4})_{2} + 4 H_{3}PO_{4} \longrightarrow 3 Ca(H_{2}PO_{4})_{2}$$

$$2 NH_{3} + H_{3}PO_{4} \longrightarrow (NH_{4})_{2}HPO_{4}$$

Phosphates, Detergents and the Environment

- Sodium triphosphate (Na₅P₃O₁₀) was used for years in detergents to complex Mg²⁺ and Ca²⁺ ions (they tend to precipitate with the detergent molecule).
- Excess of phosphates in rivers and lakes is thought to be responsible for the occurrence of eutrophication.
- Most states in North America have banned the use of phosphate in detergents by 1993.

Highly eutrophic water of the New River in London

Phosphorus Shortage

Farmers are facing a phosphorus crisis. The solution starts with soil.

Overuse of fertilizer has led to phosphorus shortages and water pollution.

October 2020

Scientists warn of 'phosphogeddon' as critical fertiliser shortages loom

March 2023

Phosphorus: A Looming Crisis

David A. Vaccari

June 2009

Phosphorus Shortage

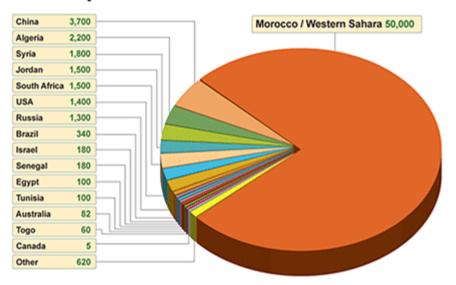
Farmers are facing a phosphorus crisis. The solution starts with soil.

Overuse of fertilizer has led to phosphorus shortages and water pollution.

October 2020

Scientists warn of 'phosphogeddon' as critical fertiliser shortages loom

March 2023

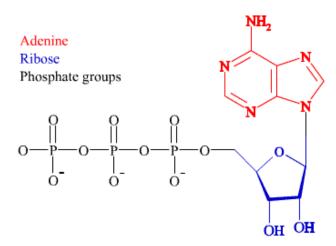

Phosphorus: A Looming Crisis

David A. Vaccari

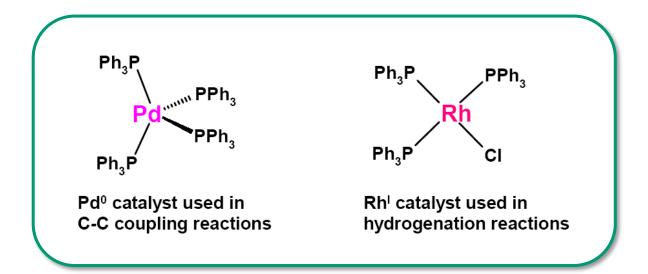
June 2009

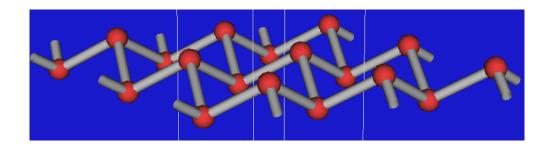
Phosphorus Shortage

World Phosphate Rock Reserves 65,000 million tonnes*



Phosphates and Life


- Most phosphate in animals is found in the form of calcium phosphate in the bones.
- Of the phosphate in the blood, 92 % are organophosphates and only 8 % are simple phosphate.
- The organ richest in phosphate is brain tissue.
- ATP acts as a source of chemical energy. It is produced in our bodies at ~ 1 kg/h!.
- The recommended daily intake of phosphate is 0.8 g but a normal diet supplies 1-2 g per day.
 Phosphate rich: tuna, salmon, chicken, eggs and cheese (>200 mg per 100 g).


Phosphines (PR₃)

- Phosphines are important ligands in coordination chemistry.
- Are able to stabilize metals in low oxidation states.

Arsenic

- Arsenic occurs free in nature, but is most often found in the mineral arsenopyrite (FeAsS).
- The thermodynamically most stable form is **metallic** (or grey) arsenic with a sheet structure. At high temperatures, it sublimes to give As₄ molecules in the gas phase. If cooled rapidly, you get yellow arsenic (analogous to white phosphorus).

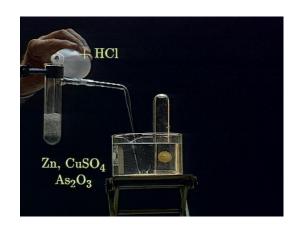
Sheet structure of arsenic (antimony and bismuth are isostructural)

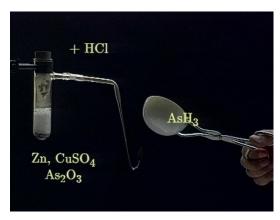
Arsenic(III) Oxide

Arsenic(III) oxide, As₂O₃, is a white, crystalline solid which is formed by oxidation of As in air
or by oxidation of As-containing minerals.

$$4 \text{ As} + 3 \text{ O}_2 \longrightarrow 2 \text{ As}_2 \text{O}_3$$

$$2 \text{ FeAsS} + 5 \text{ O}_2 \longrightarrow \text{As}_2 \text{O}_3 + \text{Fe}_2 \text{O}_3 + 2 \text{ SO}_2$$


 As₂O₃ is a highly toxic with a lethal dose of ~ 0.1 g. Dangerous because tasteless. In the 15th and 16th century, the Italian family of Borgias used arsenic as their favorite poison for political assassinations. Symptoms of arsenic poisoning were difficult to detect, since they could mimic food poisoning.



 As_2O_3

Marsh's Test for Arsenic

Strong reducing agents, e.g. Zn / HCl, reduce As_2O_3 to the oxidation state -3 of the arsenic hydride. This can be verified by thermic decomposition .

$$6 \text{ Zn} + 12 \text{ HCl} \longrightarrow 6 \text{ ZnCl}_2 + 6 \text{ H}_2$$

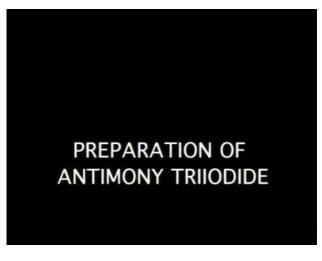
$$As_2O_3 + 6 \text{ H}_2 \longrightarrow 2 \text{ AsH}_3 + 3 \text{ H}_2O$$

$$2 \text{ AsH}_3 + 1.5 \text{ O}_2 \longrightarrow 2 \text{ As} + 3 \text{ H}_2O \text{ (air deprivation; black mirror)}$$

$$2 \text{ AsH}_3 + 3 \text{ O}_2 \longrightarrow As_2O_3 + 3 \text{ H}_2O \text{ (excess air; white mirror)}$$

Antimony

- A hard, crystalline semi-metal which also exists as a grey powder.
- Most important oxidation states: +3 and +5 with the former being more stable.
- It is sometimes found free in nature, but is usually obtained from the ores stibnite (Sb₂S₃).
- Very pure antimony is used to make certain types of semiconductor devices.
- Antimony compounds are quite toxic although they were used extensively as a medicine in the 16th to 18th century.


Stibinite, the main source of antimony.

Large crystals of Sb.

Antimony Halides

- With all halides, a compound of the formula SbX₃ is formed. They are solid compounds at RT.
- Pentahalides SbX₅ are known for X⁻ = F⁻ and X⁻ = Cl⁻.

(Video)

Comparison of As(III) and Sb(III)

Precipitation of yellow As₂S₃ and orange Sb₂S₃ results from the addition of hydrogen sulfide or thioacetamide to hydrochloric solutions of arsenite and antimonite.

$$2 \text{ As}^{3+} + 3 \text{ S}^{2-} \longrightarrow \text{As}_2 \text{S}_3 \text{ (yellow)}$$

$$2 \text{ As}^{3+} + 3 \text{ S}^{2-} \longrightarrow \text{As}_2 \text{S}_3 \text{ (yellow)}$$

 $2 \text{ Sb}^{3+} + 3 \text{ S}^{2-} \longrightarrow \text{Sb}_2 \text{S}_3 \text{ (orange)}$



Bismuth

- Bismuth does occur free in nature and in minerals such as bismite (Bi₂O₃).
- Pure bismuth is a white, brittle metal with a slight pink color.
- Bismuth oxide (Bi₂O₃), a bismuth compound, is used as a yellow pigment in paints and cosmetics. Bismuth oxychloride (BiOCI) is used to make a pigment known as bismuth white.
- Peptobismol[®] is a suspension of bismuth subsalicylate (BSS) – antibacterial and thickens the gastric mucus.

